If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2-19k+20=0
a = 3; b = -19; c = +20;
Δ = b2-4ac
Δ = -192-4·3·20
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-11}{2*3}=\frac{8}{6} =1+1/3 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+11}{2*3}=\frac{30}{6} =5 $
| 7x+3+35x+2=180 | | 2y+(-5)=-23 | | (4x+4)x(4x+4)=21(3x+24) | | 7-4x=8+ | | (q-10)*5=40 | | 4x^2+12x=80 | | 5c+4=17-2c | | 2×x+3×x=30 | | 2*x+3*x=30 | | 3(2x+3=33 | | 8x+17=4x+9 | | z9=0 | | t^2+2t-0.5=0 | | t^2+2t+0.5=0 | | 6x+20=3x+8 | | 30x=4200 | | 30x=3136 | | 3x(7x-1)=41 | | 23t=-161 | | 9w=216 | | 7h+4=h | | 9n=2n+3 | | 175=25g | | 2k-3+4k=39 | | 5(4-x)=25 | | 90-x=57 | | 3x-1/4=4/7 | | 5(-6x+10)=-40 | | F(x)=10×-1 | | 98-7k-4=0 | | 4-8/3q=9 | | 94-7k=0 |